#数据结构#图论是理解大数据的关键吗?

#数据结构#图论是理解大数据的关键吗?

现在大数据成为一个热门话题,然而无论是网页,产品信息,车辆的功能,文本,病例还是气象等数据,对数据的理解的第一步就是要理解数据之间的关联。利用图论,我们将能够进一步提高我们对数据的理解能力,同时构建和分析图论模型将使得我们能够自动获取答案。本文我们将以搜索引擎为例介绍图论在大数据分析中的作用:

如今,Google已经成为了很多人日常生活中不可或缺的一部分,这个搜索引擎巨头通过围绕在它的核心能力也就是对互联网的索引,把一系列服务整合起来提供给用户。

Google的网络爬虫和PageRank算法使得人们搜索网络的方式发生了革命性的变化。通过对网页链接数量和重要性的分类,Google能够比竞争对手更快地提供更加相关的信息。

网站和网站之间的链接组成了一个图,这不是我们通常所说的可视化的图,而是一种用来表示每个网页如何与其他网页发生关系的模型。

PageRank算法就是采用这种模型来判断一个网页的重要性的。一个网页拥有越多的外部链接,它的重要性就可能越高,如果一个网页被更多的权威信息源所引用,那么这个网页的重要性也就越高。Google搜索引擎的搜索结果一般来说比竞争对手要更快更好,就是因为它的算法涵盖了互联网页面之间的绝大部分链接。

把类似的想法应用到其他数据上,来分析数据之间的关联,也能够揭示一些数据背后的本质。告诉我们哪些是相关的,哪些是重要的。

图论就是研究数据联系的模式

要理解我们如何从数据中得出答案,我们需要了解我们传统上是如何与数据打交道的。几乎所有的试图从数据中寻找答案的过程都是通过搜索实现的。

搜索首先总是从提出问题开始的。我们把已知的与数据联系的越好,我们提出的问题就越可能找到答案。比如说,如果你找不到你的钥匙,可能你会问:”我的钥匙在哪里?”。不过,这可不是一个容易得到答案的问题。它太宽泛了。而如果你问:“我的钥匙是不是掉在收银台了?”这个问题比第一个问题要具体一些。如果你的钥匙在收银台,那这个问题就是一个好的问题。如果不是的话,这个问题也不是个好问题。

对数据库的查询与上述方式类似。要想得到你想要的结果,你需要构造一个与你的数据相关的查询条件。你可以使用的查询语句不计其数,但是只有少部分能够让你得到你需要的答案。

这样的情况才是数据科学的真正难点所在,也是为什么好的分析师凤毛麟角的原因。最好的数据科学家是那些既懂得数据,又懂得那些提出正确问题的人。

如果把互联网看成数据集的话,那么搜索引擎就是你的查询工具。

几十年来,搜索引擎都在抓取网络信息,索引网页以便能够被搜索到。通过构造不同的搜索条件,用户可以得到不同的结果。搜索引擎服务商们不断的改进他们的产品。然而搜索引擎的真正创新出现在年左右。

当时,Google的PageRank算法通过对每个链接以及其链接的内容进行建模。通过图论建模,Google把网页之间的联系进行了量化,以帮助用户更快地获得相关的结果。这一算法使用了网页之间的关系来提高搜索结果的质量。而无论哪种搜索引擎,用体提供的搜索条件描述性越好,就越能够得到好的结果。

你的搜索条件与Google的PageRank算法之间建立了一个联系。而Google通过图论建模,建立了一个你的搜索条件与相关页面之间的联系。如果没有关于相关页面和链接的模型,Google就需要更精确的搜索条件才能得到满意的结果。然而,即便是采用更先进的搜索技术,现在的数据问题也会使得构造一个正确的查询条件变得困难。

现在大数据成为一个热门话题,然而无论是网页,产品信息,车辆的功能,文本,病例还是气象等数据,对数据的理解的第一步就是要理解数据之间的关联。认同这一点的话,就能够理解为什么图论在将来能够为人们的数据分析提供思路。

今天,我们对数据的很多分析和研究方式已经被图论深深地影响了。而在未来,利用图论,我们能够进一步提高我们对数据的理解能力。构建和分析图论模型将使得我们能够自动获取答案。当我们把数据自己联系起来的时候,数据中隐藏的答案会自己出现。









































北京那个治疗白癜风医院比较好
白癜风最先进治疗方法



转载请注明:http://www.92nongye.com/txjg/204612772.html